
Unit design: Slope fields and solution curves 
 

In this note we give a short description about what motivated us to pay more attention to 

slope field in lessons than we did before in our lessons. We have a  look at results from 

educational research literature and compare them with our own classroom experiences. This 

automatically brings us to the design of the student activities for both in lecture and tutorial. 

Motivation 
In the past, in a basic mathematics course for 1st year psychobiology students, we paid little 

attention to the slope field of an first-order ordinary differential equation. Instead we focused 

on the procedural solving of ODEs, that is, on the finding of an implicit or explicit algebraic 

expression of a solution via standard methods like separation of variables. The following text 

fragment shows that in the course notes we even discuss the general case before looking at 

particular example. This is a typical case of overestimating the mathematical abilities of the 

students and ignoring their potential conceptual difficulties with slope fields.  

A dynamic system of first order that can be written in the form 

𝑑𝑦

𝑑𝑡
= 𝜑(𝑡, 𝑦) 

can be "solved" in the following geometrical manner. 

Take a point (𝑎, 𝑏) and suppose that there is a solution 𝑦(𝑡) of the ODE whose graph goes through 
(𝑎, 𝑏). For this function 𝑦 holds 

𝑦(𝑎) = 𝑏 

and 

𝑦′(𝑎) =
𝑑𝑦

𝑑𝑡
(𝑎) = 𝜑(𝑎, 𝑦(𝑎)) = 𝜑(𝑎, 𝑏) 

The tangent line of the graph of 𝑦 at the point 𝑎, 𝑏 is completely determined by these two numbers 

(see the above section). The equation of the tangent line is namely 

𝑦 = 𝑏 + 𝜑(𝑎, 𝑏) ⋅ (𝑡 − 𝑎). 

The function 𝑦 itself is unknown, but the tangent line of 𝑦 at point (𝑎, 𝑏) is known. If you now draw 

at the point (𝑎, 𝑏) a small piece of that tangent line, then it will resemble the graph of the solution 

whose graph goes through (𝑎, 𝑏). Such a line piece is called a lineal element at a point in the 𝑡, 𝑦 

plane. For many different points (𝑎, 𝑏) in 𝑡, 𝑦 plane one can draw lineal elements. A drawing with 

many lineal elements is called a slope field or direction field of the OSE. Usually one uses a regular 

grid of points, but this is not necessary. By drawing a smooth curve that is tangent at any point on 

the lineal elements we get a so-called integral curve, the graph a solution of the ODE. Such a curve is 

also called a solution curve. 

It is not surprising that we experienced in tutorials (this course has no lectures anymore) that 

many a student had difficulties with understanding how a slope field is constructed for a given 

ODE and what one could do with it (except just ‘going with the flow of lineal elements’). 



For the basic mathematics course for 1st year psychobiology students it was not considered a 

big issue that slope fields was a topic of minor importance. We could live with the course 

contents and just try to find time to gradually improve it. 

But for the new course for  1st year students in biomedical sciences, the situation has changed 

completely. This course can be considered as an introduction into system biology  and 

therefore dynamic systems is core business. Because we do not treat the topic of integration, 

we must rely on computer simulations to let students explore biomedical examples of 

processes of change and to let them find out how mathematics can help understand the 

nature of equilibria. Slope fields for first order differential equations and direction fields for 

systems of differential equation are important tools, also when applied in a qualitative sense. 

Some results from educational research literature 
Differential equations are a subject at tertiary level and a consequence is that less research has 

been done about than for mathematical subjects at primary and secondary level.  Advances in 

technology, together with an increased interest in dynamic systems and in particular in 

nonlinear systems,  has changed first courses in differential equations, especially for non-

mathematics students. 

Chris Rasmussen and Karen Whitehead (2003) reported in their MAA Research Sampler  about 

learning and teaching ordinary differential  equations that, in order to be successful in this 

area, learners must be able to  

 move flexibly between algebraic, graphical, and numerical representations; 

 make interpretations from the various presentation of situations being modelled; 

 make warranted predictions about the long-term behaviour of solutions. 

Student difficulties with ODEs, such as alternative ideas and conceptual gaps, can often be 

found in relation to the above wish list of abilities. Rasmussen (2001) found, for example, that 

behind students’ correct answers there often lay an incorrect conception of equilibrium 

solution.  Student may get the impression for examples of autonomous ODEs that an 

equilibrium solution exists when the equation is zero. Then they incorrectly conclude that the 

ODEs 
𝑑𝑦

𝑑𝑡
= 𝑦 − 𝑡 and 

𝑑𝑦

𝑑𝑡
= 𝑡 + 1 have steady states 𝑦 = 𝑡 and 𝑡 = −1, respectively. A typical 

case of overgeneralization. One possible explanation,  brought up by Rasmussen, involves the 

difficulty of conceptualizing  a solution as a function that satisfies the differential equation.  

Students may consider equilibrium solution as points where the derivative is zero, rather than 

as constant functions that satisfy the differential equation, simply because they associate the 

derivative with the slope of the tangent line at a point.  

Rasmussen also found that although students were able to carry out a stability analysis 

following some graphical approach this did not automatically link their sketches with solutions 

curves. In the MMA Research Sampler the finding is generalized to the statement “graphical 

and qualitative approaches do not automatically translate into conceptual understanding”. 

The authors’ advice is to give students ample opportunities to expand and mathematically 

defend their conclusions in their work. Rasmussen is in favour of the Realistic Mathematics 

Education (RME) framework for realizing this. Rasmussen and Kwon (2007) describe an inquiry-



oriented approach to undergraduate mathematics  that they have used in their Inquiry 

Oriented Differential Equations project and this is basis on RME. 

With regards to slope fields, researchers are cited who found evidence of weak student images 

of the Euler’s methods for finding a numerical solution of an ODE. Michelle Artigue (1992), for 

example,  found that the students’ mental image of Euler’s method is similar to that of a semi-

circle inscribed with a series of line elements. Rasmussen found that students sometimes 

thought that numerical solutions ‘track’ the exact solution by using the slope of the exact 

solution at the start of each next step.  

Sketching solutions curves in the slope field is also troubled by overgeneralization: solutions 

that tend to converge continue converging. We have also noticed in our hands-on activities 

that students when drawing a solution curve thought that once it starts moving on a nullcline 

in some direction, it will continue in that same direction, whereas it may just go in the 

direction to an attractive steady state and come to a standstill near that equilibrium. This 

misconception may exist for other isoclines as well. 

Saber Habre (2000) is cited in the MMA Research Sampler for his observation that students 

being exposed for years of schooling to the importance of analytical and algebraic settings 

have some difficulties in accepting the same status for graphical and numerical settings as 

ways to understand solutions of differential equations. He also points at the students’ difficulty 

of understanding the meaning of solution of a differential equation. Raychaudhuri (2008) 

argues that the definition of solution entails the context of differential equations (versus the 

context of solution for an algebraic equation), a mathematical entity (in this case as function), 

a process that specifies the desired property (in this case the function must satisfy the 

differential equation), and an object with an implied or implicit process that generates the 

entity (e.g. separation of variables or an integrating factor). In one of the lectures we were also 

faced with a student who dared to ask the question after being exposed to three worked-out 

examples of solving an ODE:  “but sir, what do you actually mean by saying ‘solving a 

differential equation’? I still don’t get it”. 
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Relevant student activities prior to the study of slope field 
We were aware from the start of the basic mathematics course for 1st year students in 

biomedical sciences that a slope field of an ODE would be one of the key concepts in our 

introductory course on dynamics systems. We also had already decided that students would 

use the R environment to apply the concept in real applications because there was no time for 

learning analytical methods such as separation of variables because we would not deal with 

integration of functions. This would give students with a Mathematics A background from 

secondary school instead of a Mathematics B background a less disadvantageous starting point 

in the course. Before going into details of the design of the unit on slope fields, we describe 

the prior teaching and learning in the course that is relevant for understanding slope fields. 

The introduction to differential equations was envisioned to happen in steps: first familiarizing 

students with the concept of differential equation through simple models like exponential 

growth and limited exponential growth. This would allow students to see that properties of 

functions can also be expressed in terms of equations that involve the derivative of the 

function. Students could in this way learn a bit of the terminology of differential equations, 

such as initial value problem and what solving an ODE means, before they would get a more  

formal introduction. One could say that we use small steps and repetition to familiarize 

students with the topic before we would teach it in a more formal way and introduce the slope 

field as well. 

Being aware that slope is not an easy mathematical concept, but has many facets, and realizing 

that students must have a good conceptual understanding of it before they can grasp a slope 

field we spent considerable time and effort  (one week) to let students deal with derivatives. 

This subject is taught at secondary school, but we put much more emphasis on (i)  the use of a 

tangent line at a point of the graph of a function as an approximation of the graph of the 

function in the neighbourhood of that point; and (ii) the notion of difference quotient. We also 

tried to let student be more aware of the connections between various aspects of differen-

tiation and derivatives. 

What did that mean for the lecture? Our planning was to ask first the following three ques-

tions, prepared on the presentation sheet, in order to start a classroom discussion about what 

students already know: 

1. What is the derivative of 𝑦 = 2𝑡3 − 𝑡 + 1? 

2. When 𝑦 is a function of 𝑥, explain in words what the following means: 
𝑑𝑦

𝑑𝑥
= 5 for 

𝑥 = 10. 

3. The derivative of the function 𝑓 is given by 𝑓′(𝑡) = 𝑡2 − 5𝑡 + 3. What is the slope of 

the tangent line of 𝑓 in 𝑡 = 1. 

These questions and the discussion were followed by looking more closely at slope, difference 

quotient (average change), differential quotient (momentary change, as a limit process), and 

tangent line (as linear approximation of the function near a point). We discuss thoroughly the 



following picture and its relation to the algebraic expression 𝑓(𝑡) − 𝑓(𝑎) ≈ 𝑓′(𝑎) ∙ (𝑡 − 𝑎), 

which can be rewritten as in the form of an equation of a straight line 𝑓(𝑡) ≈ 𝑓(𝑎) + 𝑓′(𝑎) ∙

(𝑡 − 𝑎) 

 

We stress the importance of realizing that the graph of a decent function 𝑓 can be 

approximated in the neighbourhoood of any point 𝑡 = 𝑎 by a straight line with slope 𝑓′(𝑎). 

You only have to zoom in enough at the point to see it. This emphasis we feel is needed for 

good understanding of the slope field of an ODE and its usefulness.  

The lecture about differentiation and derivatives continues with discussing the rules of 

differentiation, derivatives of standard mathematical functions (powers, exponential functions 

and logarithms; no trigonometric function because we do not use them anywhere in the 

course as students with mathematics A background know far less about them as students with 

mathematics B background), higher derivatives, and the uses of derivatives to determine 

maxima, minima and inflection points. The last part of the lecture is devoted to an inquiry-

based approach to let students discover ways to numerically approximate a slope at some 

point. The task given is: 

Given are the following values of a function 𝑦(𝑡) in the neighbourhood of 𝑡 = 1: 

t 0.7 0.8 1.0 1.1 1.2 

y(t) 0.741 0.819 1.000 1.105 1.221 

What is the best approximation of 𝑦′(1)? (exact answer = 1 because 𝑦(𝑡) = 𝑒𝑡−1) 

Try  several methods and compare the results with each other 

We discuss this task and its outcomes in class elsewhere. The lesson ends with an application 

of numerical differentiation to estimate parameters in the logistic growth model of child 

weight growth by carrying out parabolic regression between the numerical derivative of 

weight plotted against weight (at certain age) on the basis of real data from a Dutch growth 

study, and its implementation in the R environment. In the tutorial students are supposed to 

explore numerical differentiation more deeply, using the R environment as tool to experiment 

with a noisy signal. 

In the lecture and the course notes about differentiation and derivatives, we consider slope as 

algebraic ratio (difference quotient), a parametric coefficient (in the equation of a straight 

line), functional property (rate of change between two variables), and as a calculus concept 

(related to the derivative of a function), and we discuss the link between these aspects of slope 

and try to better balance the emphasis on these aspects.  



For understanding the slope field of a differential equation and its purpose, students must 

already have a sound idea about what solving a differential equation means. In a lecture about 

unlimited growth (linear, quadratic and exponential growth model) we spend fair time on 

looking at what a differential equation actually is. Students already know algebraic equations 

such as 𝑥2 = 2 and what the two solutions are, but they may not realize that one can look at 

the problem of solving the equation as finding a yet unknown number, denoted by 𝑥, that has 

the property that its square equals 2. Thus, the equation specifies a property of a number we 

are looking for. Students are also familiar with functional relationship like 𝑥2 + 𝑦2 = 1 in 

which you can isolate one variable and then consider the obtained equation as a function 

definition. Thus one can look at the equation 𝑥2 + 𝑦2 = 1 as the property 𝑥2 + 𝑦(𝑥)2 = 1 for 

a yet unknown function 𝑦(𝑥). This prompts students to look at a functional relationship as a 

property of a mathematical function that has not yet been explicitly defined. For differential 

equations we want student to take the same perspective: 𝑓′(𝑡) = 𝑓(𝑡) can be considered as a 

property of a yet unknown function 𝑓(𝑡). Solving the equation can then be considered as 

finding a more explicit way of describing the function. In this example, it can be an algebraic 

function definition (𝑓(𝑡) as multiple of the equational function 𝑒𝑡), or a graphical representa-

tion (found in some mysterious way), or some numerical method to compute function values 

at any point of interest such that the  numerical derivate and the function have the given 

property, i.e. ‘satisfy the ODE’. In the lecture we discuss the notion of ‘general solution of an 

ODE’ and ‘particular solution of an ODE’, and how extra condition can be used to specify a 

unique solution. The following ODEs (and related initial value problems) are discussed in the 

following order of appearance: 𝑦′(𝑡) = 0 , 𝑦′(𝑡) = 2,  𝑦′′(𝑡) = 0,  𝑦′(𝑡) = 2𝑎𝑡 + 𝑏, 

𝑦′(𝑡) = 𝑦(𝑡), and 𝑦′(𝑡) = 𝑟 ∙ 𝑦(𝑡). In the lecture where we discuss the slope field we first 

repeat the above discussion about what a differential equation actually is and what it means to 

solve an ODE. 

The design of student activities 
In our community of learning we discussed our design of student activities before dividing the 

work amongst each other. The CoL consists of the course coordinator and lecturer André Heck, 

and the two tutorial leaders, being the PLATINUM member Marthe Schut and the student  

assistant Ebo Peerbooms (who generously was paid for a work load of 15 days to help design 

and implement student activities). The main discussion was about how to introduce the slope 

field to students and what kind of task would be help them better understand the concept. We 

decided that we would have a hands-on/brains-on session in the lecture, where the lecturer 

would first introduce the concept as a joint activity with a worksheet at hand, and that 

students would go through a series of worksheet task that would be discussed in the lecture 

room. In the tutorial session student would go through similar tasks to become more proficient 

with slope field and the sketching of solution curves herein. The would also carry out task to 

match slope fields with algebraic formulations of ODEs. 

Worksheets for hands-on/brains-on session during the lecture 

The first example used is the lecture is the initial value problem 
𝑑𝑦

𝑑𝑡
= 2 − 𝑦, 𝑦(0) = 1. The first 

questions that the lecturer asks to start group discussion is: What do you know about the 

solution? Discussion goes on until the students and lecturer arrive together at the conclusion 

that although the solution y is unknown in (0,1), it tangent line is known and has slope 1. A 



small piece of the tangent line (the lineal element) through (0,1) resembles the graph of the 

solution of the ODE near that point. This raises the question whether you can do this for other 

points, say  (𝑡, 𝑦), in the plane as well. The answer is of course yes and students are invited to 

draw lineal elements in a prepared worksheet. Thus, in the first worksheet activity they learn 

how to draw lineal element in the 𝑡, 𝑦 plane. 

The next step is to introduce the students to graphical sketching of solutions based on the 

slope field. The first introductory example chosen is the ODE 
𝑑𝑦

𝑑𝑡
= 2, for the reason that all 

lineal element have the same slope and all known solutions, which students already know to 

be straight lines, follow the same direction as the lineal elements. The starting question for 

group discussion is what is known about the lineal elements the given ODE and what is  known 

about the general solution. Finally the slope field with solution curves is shown to the students 

and further discussed. 

As third example we consider the ODE 
𝑑𝑦

𝑑𝑡
= 𝑡 with quadratic solution curves. The group 

discussion follows the same pattern as the second example. But this example is also used to 

start talk about sketching solution curves on the basis of a set of lineal elements. We exemplify 

the forward Euler method through this example before we discuss the method in more general 

setting. The picture used in the lecture tries to tackle the misconception of a sequence of line 

segment connecting point on the exact solution curve 

 

Students are redirected to the first example of the ODE 
𝑑𝑦

𝑑𝑡
= 2 − 𝑦 and are invited to sketch 

solution curves in their worksheets. What is a big advantage in this activity is that one can walk 

around in the lecture room as lecturer and see at a glance in students’ work whether they have 

grasped the concepts and, if not, what obstacles they still encounter. 

The next initial value problem is 
𝑑𝑦

𝑑𝑡
=

𝑦

2
, 𝑦(1) = 1. Students are invited to sketch the solution 

curve. This example is chosen to practice more with the slope field of a differential equation 

about which they already know more and which they can solve algebraically. Another reason 

for designing this task is that students learn that one can use any condition to move from a 

general solution to a particular solution and that this does have always have to be a condition 

of the form 𝑦(0) = ⋯. 

Students continue to work with a slope field for the ODE 𝑦′ = 𝑦 (1 −
𝑦

4
). Students have stu-

died the logistic growth model before and know  about its solutions. But using a familiar 



example to practice working with slope field and sketching solution curves herein helps 

students to look at the long-term behaviour of solution curves. The lecturer discussed through 

this example the concept of equilibrium and the nature of equilibria (attractive/repelling; 

stable/unstable/semi-stable). The lecturer may even talk about the phase portrait that sum-

marizes the stability analysis, as a kind of appetizer of what is coming soon.  

The next example in the hands-on/brains-on session in the lecture is the ODE 
𝑑𝑦

𝑑𝑡
= 𝑡 − 𝑦, in 

which the right-hand side involves both the independent and dependent variable, and for 

which all solution curves in the long-term approach a straight line solution. In the tutorial 

session they will elaborate on a similar ODE, here students are only expected to sketch some 

solution curves and observe the asymptotic behaviour of solutions of the ODE. Students learn 

that there are more interesting aspects of  asymptotic behaviour of solutions than approaching 

an equilibrium and that slope fields can give you a good first impression. The next example, 

with ODE 𝑦′ = 𝑡2 − 𝑦 − 2 is similar, but now the asymptotic behaviour of solutions is that 

they all tend to approach a quadratic solution curve. 

The final worksheet example concerns the ODE 𝑦′ = −2𝑡 ∙ 𝑦 and helps students to see that 

solution curves can sometimes be looked upon as a set of curves of the same shape and 

behaviour. 

Worksheets for hands-on/brains-on session during the tutorial 

The tutorial also contains hand-on/brains-on parts in a prepared worksheet. Students are 

asked to draw a slope field of the ODE 𝑦′ = 𝑦 (1 −
𝑦

5
) describing logistic growth.  The reasons 

for using a similar example as discussed in the lecture are (i) that the student work  will reveal 

whether they have understood what was taught before or that they need more practice;  and 

(ii) that we know that not all students are present at the lectures and may not even had a look 

at the lecture recordings. For the latter category of students, the slope field is a new subject. 

Students are invited to study asymptotic behaviour of solutions and the nature of equilibria for 

this ODE. 

 The second major example of slope field is in the tutorial worksheet one that belongs to the 

ODE 𝑦′ = 3 − 𝑦 − 𝑡. Students are invited to draw lineal elements in a diagram and add two 

solution curves. Both curves approach in the long term a straight line with slope -1. Students 

are invited to find the equation of this line, but are free to choose the method for 

accomplishing this: it may be based on the slope field or be done in an algebraic way. The 

algebraic approach will be discussed anyway in the final assignment in which students use a 

linear transformation to turn the problem into finding the general solution of a differential 

equation of restricted  exponential growth. Students explore the slope field and the solution 

curves of the created ODE and relate the equilibrium of this ODE with the straight line 

describing the asymptotic behaviour of solution in the original problem. In this way, student 

experience how familiar mathematics is applied to come to grips with more complicated 

differential equations. This is a form of closed student inquiry: the methods and the results are 

predetermined, but the students must carry out the involved mathematics and hopefully get 

the idea how mathematicians ‘play’ with differential equations or use various modes of 

reasoning. 


