Assignment 1 - Differential Equations

Do the SOWISO practice exercises Determining the type and order of ODEs and Solving an initial value problem in the chapter Differential Equations before you start with the tasks below..

Slope fields and solution curves
Read the SOWISO theory page Slope field in the section Slope fields and solution curves of the chapter Differential equations.

Assignment 2 - Logistic growth

a Draw in the below diagram the slope field corresponding with the differential equation

$$
y^{\prime}=y\left(1-\frac{y}{5}\right)
$$

Read the SOWISO theory page Behaviour of solutions in the section Slope fields and solution curves.
b Draw the two equilibrium solutions with a solid line.
c Given the initial value

$$
y(0)=1
$$

sketch the solution curve that corresponds with this initial value.
d What can you say about the stability of the equilibrium solutions drawn in part b?

Assignment 3

Do the SOWISO practice exercises Working with slope fields.

Assignment 4 - Time dependency

a Sketch in the below diagram the slope field that corresponds with the differential equation

$$
y^{\prime}=3-y-t
$$

b Sketch the solution curve that corresponds with the initial value

$$
y(0)=0
$$

c Also sketch the solution curve that corresponds with the initial value

$$
y(0)=6
$$

d As you may notice, both solution curves tend to approach a straight line with slope -1 . Such a line is also called an isocline. Determine the equation of this line. Write your answer in the form

$$
y=a t+b
$$

Draw this line in the diagram.

Assignement 5-Transformation

We consider the differential equation of the previous assignment once more:

$$
y^{\prime}=3-y-t
$$

As you may notice, this differential equation depends explicitly on time. We can get rid of this time dependency by transforming the equation.
a Define a new variable $u(t)=3-y(t)-t$ and show that you can rewrite the original differrential equation in y as the following differential equation in u :

$$
u^{\prime}=-(u+1)
$$

b Write the initial values of y from the previous assignment

$$
y(0)=0, \quad y(0)=6
$$

in terms of u. So, you get two answers of the form

$$
u(0)=a, \quad u(0)=b
$$

c Sketch in the below diagram the slope field that corresponds with the differential equation of u.

d Sketch the solution curve that corresponds with the initial values a and b that you found in part b.
e Both solutions approach the line $u=-1$. Substitute this value in the defining equation of u in terms y and t, so

$$
u=3-y-t
$$

and solve for y in terms of t. Compare your answer with the one found in question $\mathbf{4 d}$.

