Problems on application of Existence and Uniqueness Theorem

1. (a) Verify that

$$
y(x)=\frac{2}{x}-\frac{C_{1}}{x^{2}}
$$

is the general solution of a differential equation

$$
x^{2} y^{\prime}+2 x y=2
$$

(b) Show that both initial conditions $y(1)=1$ and $y(-1)=-3$ result in an identical particular solution. Does this fact violate the Existence and Uniqueness Theorem (EUT)? Explain your answer.
2. (a) Verify that

$$
y(x)=C_{1}+C_{2} x^{2}
$$

is the general solution of a differential equation

$$
\begin{equation*}
x y^{\prime \prime}-y^{\prime}=0 \tag{1}
\end{equation*}
$$

(b) Explain why there exists no particular solution of equation (1) satisfying initial conditions

$$
y(0)=0, \quad y^{\prime}(0)=1
$$

(c) Suggest different initial conditions for this differential equation so that there will exist exactly one particular solution of a new initial value problem. Motivate your choice.
3. (a) Create a third order linear differential equation for which solution exists and is unique. Explain your answer.
(b) Create a first order nonlinear differential equation for which solution exists and is unique. Explain your answer.
4. The coefficient $p(x)=2 / x$ in a linear differential equation

$$
x y^{\prime}+2 y=18 x^{4}
$$

is discontinuous at $x=0$.
(a) According to the EUT will a solution satisfying the initial condition $y(0)=0$ exist or not?
(b) How does your answer to part (a) agree with the fact that $y=3 x^{4}$ is the exact solution of the initial value problem

$$
x y^{\prime}+2 y=18 x^{4}, \quad y(0)=0 ?
$$

Explain.
5. (a) Verify that the initial value problem

$$
\begin{gathered}
x^{2} y^{\prime \prime}-6 y=0 \\
y(0)=0, \quad y^{\prime}(0)=0
\end{gathered}
$$

has infinitely many solutions of the form

$$
y(x)=C x^{3}
$$

(b) Does this fact violate the EUT? Explain your answer.
6. Decide whether the following statements are true or false. Explain your reasoning.
(a) Solution curves to a differential equation never intersect.
(b) Differential equation

$$
\left(y^{\prime}\right)^{2}=y
$$

has a unique solution satisfying initial condition $y(0)=0$.
(c) Solution of a first order differential equation always exists but may not be unique.

