8 socrative

Arc length and surface area test

Score:

1. Which integral gives the arc length of the curve $y=tan(x)$ between $x = 0$ and $x = \pi/4$?		
A a	(a) $\int_{0}^{\frac{\pi}{4}} \sqrt{1 - \sec^{4} x} dx$ (c) $\int_{0}^{1} \sqrt{\frac{\pi}{4} + \sec^{4} x} dx$	
	(e) $\int_{0}^{\frac{\pi}{4}} \sqrt{1 + \sec^2 x \tan^2 x} dx$	
D d		
 e 2. If the curve y = ln(x) between x = 1 and x = e is rotated a 	about the view	s which
integral gives the surface area?	2	
(A) a (B) b	(a) $2\pi \int_{1}^{e} \frac{\ln x}{\sqrt{1+x^{2}}} dx$ (c) $2\pi \int_{1}^{x} x \sqrt{1+x^{2}} dx$	
	(e) $2\pi \int_{1}^{e} x \sqrt{1 - \frac{1}{x^2}} dx$	

- C c D d
- E e