
Maude manual

Adrián Riesco

Theory of Programming Languages

Academic year 2020/21

Contents

1 Introduction 1

2 Maude 2

3 Programming in Maude 2
3.1 Functional modules . 2

3.1.1 Natural numbers . 3
3.1.2 Stacks . 5
3.1.3 Lists . 6

3.2 System modules . 10
3.3 Checking invariants by search . 12
3.4 Using Maude . 13
3.5 Frequent errors . 14
3.6 Predefined modules . 14

1 Introduction

Formal methods in computer science rely in four principles: (1) the existence of a clear
and concise semantic framework of the behavior of software systems; (2) the existence
of a clear, detailed, and non-ambiguous representation that allows developers to specify
software systems and associate them a particular semantics; (3) the existence of a clear and
detailed formalism where the properties of systems can be defined and where the validity
of these properties with respect to a particular semantics can be established; and (4) the
existence of techniques to verify these properties. Thus far, formal methods have been
applied, on the one hand, as part of the software development process, producing secure
and reliable software by construction, making use of its above-mentioned semantics. On
the other hand, they have been used once the software development process has finished,
verifying whether the system fulfills some given properties.

In the first case, the so-called declarative programming (or specification) languages
(such as the algebraic languages Maude and OBJ, the functional languages Haskell and
ML, the logic languages Prolog and Gödel, or the functional-logic languages Curry and
TOY) are very appropriate for developing software, in contrast to more difficult to read
languages such as UML, which are presented in natural language and might only include
semi-formal specifications that cannot be automated. In the second case, specification and
verification techniques based on different formalisms, like reachability and model checking,
have been successfully used not only in academy, but also in industry.

1

This second approach is the followed by Maude, which is not an alternative to standard
programming languages but a specification language to specify and verify systems. For
example, Maude has been used to reason about communication protocols like FireWire
(IEEE 1394), the CORBA and SOAP platforms, the UML metamodel, programming
languages like Java, and it has even used at NASA in the development of software for
recognising objects in space.

2 Maude

The programming language Maude [?, ?] uses rewrite rules in a similar way to functional
languages such as Haskell [?], ML [?], Scheme [?], and Lisp [?]. In particular, Maude is
based on rewriting logic, which allows programmers to define several complex computation
models such as concurrent programming or object-oriented programming. For example,
Maude allows programmers to specify objects directly in the language, following a declar-
ative approximation to object-oriented programming that is not available in imperative
languages like C++ or Java nor in declarative languages such as Haskell.

The development of Maude relies on an international team whose purpose is the de-
sign of a common declarative platform for research, teaching, and implementation. More
information is available at:

http://maude.cs.uiuc.edu

In the following we present the main features of Maude. A complete manual is also
available [?], as well as a primer [?] in the url above. A Maude book [?] is also available
in the library and online (accessing from the UCM) at:

http://www.springerlink.com/content/p6h32301712p

3 Programming in Maude

In this section we introduce Maude syntax by means of examples. We start by presenting
the simplest modules, functional modules, and then we move to system modules. For all
modules we briefly present the available commands. Once the different modules have been
explained we will present how to use searches to check invariants in finite state spaces.
Finally, we will briefly present the Maude interpreter, the most common errors and some
predefined modules.

3.1 Functional modules

In this section we present functional modules by means of examples: we first specify
natural numbers following Peano axioms, then we will present how to specify stacks, and,
finally, we will show how to work with lists.

It is worth taking into account that in this section we talk about equations, which have
two important constraints:1 they must be terminating, that is, no infinite computations
are allowed, and confluent, that is, they must return the same final result independently
of the order in which they are applied.

1Actually, they have more constraints that will not be discussed this course.

2

http://maude.cs.uiuc.edu
http://www.springerlink.com/content/p6h32301712p

3.1.1 Natural numbers

Our first example, available in peano_nat.maude, are the natural numbers following the
Peano notation.2 First, we create a functional module called PEANO using the keyword
fmod, which indicates that the module starts here (we will see it finishes with endfm),
followed by the module name, in this case PEANO,3 and finally the keyword is:

fmod PEANO is

We need now a datatype. In this simple example we only define the type PeanoNat,
which requires the keyword sort to state we plan to define a type, followed by the type
name, PeanoNat, and finished with a dot.ggs sStatements are usually finished in Maude with a whitespace followed by
a dot, so pay attention to this fact when programming.

sort PeanoNat .

Next, we define constructors for the previous datatypes. In this case the constructors
are 0 and successor. 0 is defined with the following syntax:

op 0 : -> PeanoNat [ctor] .

First, we use the keyword op, which indicates we are defining an operator. Then, we
write the symbol we want to use to represent our constructor, in this case 0, although
any other symbol like zero, myZero, or foo would be valid as well. After this symbol we
find a colon, which indicates that the symbol has finished, and then we would find a list
of arguments, empty in this case, and the symbol -> that indicates this list has finished.
Finally, we have the type of the constructor (PeanoNat), a whitespace, a list of attributes
enclosed in square brackets, and a dot to finish the operator declaration. In this simple
case we only have the ctor attribute, which indicates the operator is a constructor, but
we will present more attributes later. The successor operator is slightly more complex:

op s : PeanoNat -> PeanoNat [ctor] .

In this case the constructor receives an argument of type PeanoNat. This means that
we can create terms like s(0) (which stands for 1), s(s(0)) (2 in the standard notation),
etc.

Once we have defined the constructors we can define functions. However, it is worth
defining variables first. In this simple case it is enough to define two variables of sort
PeanoNat:

vars N M : PeanoNat .

As shown above, we use the keyword vars (var is also valid, even for several variables)
followed by a list of identifiers separated without commas, a colon :, the type name and
finishing with a dot. The simplest function we can define for natural numbers is addition:

op _+_ : PeanoNat PeanoNat -> PeanoNat [assoc comm] .

2Note, as explained in Section 3.6, that Maude has a predefined module for natural numbers, so this
module is just an introduction to Maude and will not be used in the future.

3By convention we use capital letters for module names.

3

In this case the operator has two underlines (_). This element is not part of the operator
identifier, but a placeholder that indicates where arguments are placed. This function
receives two arguments of type PeanoNat that will be placed instead of the underscores,
so we can write, for example, s(0) + s(s(0)). Finally, this operator is not a constructor,
but it has two attributes:

• The attribute assoc indicates that the function is associative, that is, (N+M)+P =
N + (M + P) and no parentheses are required.

• The attribute comm indicates that the function is commutative, that is, N + M =
M +N . This attribute simplifies the definition of the behavior of functions, because
just one stands many others. We will discuss more complex examples later.

The semantics of functions is defined by means of equations. Equations are usually
defined by following structural induction in one argument, defining an equation for each
constructor. In this case, we can apply induction indistinctly in both arguments (because
the function is commutative) and we need two equations (because we have two construc-
tors):

*** Case 1: constructor 0

eq [s1] : 0 + N = N .

*** Case 2: constructor sucesor

eq [s2] : s(N) + M = s(N + M) .

where we have used comments to identify the cases.4 Moreover, we have used labels to
identify each equation. These labels are enclosed by square brackets and followed by :

and are optional; the module would work in the same way if we do not define them.
We observe that equations are defined with the keyword eq and using = to identify the
terms; it finishes with a dot, as usual. Equation s1 indicates that adding 0 to any natural
number, identified by the variable N, returns the same number. Equation s2 indicates that,
if the first argument is defined by means of the successor constructor, then we can add the
argument (which is obviously smaller than the whole term) with the other argument and
apply the successor constructor to the result. In this way the argument will eventually
reach the base case in s1.

We define multiplication in a similar way:

op _*_ : PeanoNat PeanoNat -> PeanoNat [assoc comm] .

eq 0 * N = 0 .

eq s(N) * M = M + (N * M) .

By default, Maude imports the predefined module BOOL, which allows specifiers to use
the sort Bool for Boolean values (more information is available in Section 3.6). Then,
we can define a Boolean function that, given a natural numbers, indicates whether the
number is positive:

op isPositive : PeanoNat -> Bool .

The equations for this function distinguish between the two constructors and use true

and false as result:

4Block comments are defined with syntax ***(...).

4

eq isPositive(0) = false .

eq isPositive(s(N)) = true .

Finally, the module finishes with endfm:

endfm

The functions defined in functional modules are executed (see Section 3.4 to know how
to start Maude) with the reduce command, abbreviated as red. Hence, we can add 1 and
2 (written as s(0) + s(s(0)) in our notation) as follows: (ggs s The command also
finishes with a dot):

Maude> red s(0) + (s(s(0))) .

reduce in Peano : s(0) + s(s(0)) .

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

result PeanoNat: s(s(s(0)))

In this first example it is interesting to see how Maude works. In this case we have the
following derivation, where we show for each step the equation applied and the subterm
involved in the reduction:

s(0) + s(s(0))
s2
 s(0 + s(s(0)))

s1
 s(s(s(0)))

We can also execute isPositive as follows:

Maude> red isPositive(s(s(0))) .

reduce in Peano : isPositive(s(s(0))) .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

3.1.2 Stacks

Once we have mastered the basic Maude syntax we can create stacks of natural numbers
(the code is available as stack.maude). We first create the STACK module:

fmod PILA is

We first require natural numbers. Although we defined basic natural numbers in the
previous section it is more convenient to use the predefined module for natural numbers.
The NAT module, as explained in Section 3.6, defines the type Nat to work with natural
numbers, so we import it with the keyword pr:

pr NAT .

Then, we define the type Stack, which has mt and push as constructors, and define
variables for numbers and stacks:

sort Stack .

op mt : -> Stack [ctor] .

op push : Nat Stack -> Stack [ctor] .

var N : Nat .

var P : Stack .

5

It is worth paying attention to the push constructor, which receives a natural number
as first argument. A stack that only contains 7 is represented as push(7, mt), while the
stack that puts a 3 on top of the 7 is represented as push(3, push(7, mt)).

The function pop removes the top of the stack. If the stack is empty it remains as mt:

op pop : Stack -> Stack .

eq pop(mt) = mt .

eq pop(push(N, P)) = P .

However, dealing with errors is not so easy for the top function. We can define a
partial operator instead of a total one; Maude will consider that the functions fails when
no equations can be applied. To define a partial function instead of -> in the definition
we need to use ~>:

op top : Stack ~> Nat .

eq top(push(N, P)) = N .

endfm

We can test the module as follows:

Maude> red top(pop(push(3, push(7, mt)))) .

reduce in STACK : top(pop(push(3, push(7, mt)))) .

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

result NzNat: 7

In this case the derivation is:

top(pop(push(3, push(7, mt)))) top(push(7, mt)) 7

3.1.3 Lists

Our last functional module, available as lists.maude, presents how to specify lists of
persons. We start defining the module PERSON:

fmod PERSON is

pr STRING .

sort Person .

op <_,_> : String Nat -> Person [ctor] .

vars S S’ : String .

vars N N’ : Nat .

We use the predefined module STRING to define persons as pairs with name, of sort
String, and the money they have, of sort Nat. We also define the appropriate variables.
We define next operators for obtaining the maximum and the minimum of two persons
with respect to the money they carry. These functions are commutative so it is enough
with one conditional equation to define each of them:

ops max min : Person Person -> Person [comm] .

ceq [max] : max(< S, N >, < S’, N’ >) = < S, N >

if N >= N’ .

ceq [min] : min(< S, N >, < S’, N’ >) = < S, N >

if N <= N’ .

6

As we have said, the equations max y min are conditional. Conditional equations are
declared with the keyword ceq instead of eq. After defining the identity we must give a
list of conditions, composed with the /\ operator.ggs s Maude also provides a if_then_else_fi operator, which must be distinguished
from conditional equations. In order to use this operator we use non-conditional equations5

and use it on the right-hand side of the equation. For the functions above we would have:

ops max min : Person Person -> Person [comm] .

eq [max] : max(< S, N >, < S’, N’ >) = if N >= N’

then < S, N >

else < S’, N’ >

fi .

eq [min] : min(< S, N >, < S’, N’ >) = N <= N’

then < S, N >

else < S’, N’ >

fi .

We plan to define ordered lists in our next module using the money as ordering criteria,
so it is convenient for us to define the notion of “smaller than or equal to” and “bigger
than”:

ops _<=_ _>_ : Person Person -> Bool .

eq < S, N > <= < S’, N’ > = N <= N’ .

eq < S, N > > < S’, N’ > = N > N’ .

Finally, we define some constants to ease testing:

ops a b c d : -> Persona .

eq a = < "a", 100 > .

eq b = < "b", 80 > .

eq c = < "c", 150 > .

eq d = < "d", 10 > .

endfm

The LIST module imports the PERSON module and defines the types List, standing for
lists, and ListOrd, standing for ordered lists:

fmod LIST is

pr PERSON .

sorts List ListOrd .

We introduce now the notion of subtype. Subtypes, defined in Maude with the keywrod
subsort and the operator <, state that all the elements defined for the lesser sort has the
bigger sort as well. In this particular case we indicate that an element with sort Person

is also a singleton ordered list. Likewise, an ordered list is a general list (ggs s subsorts
also finish with dot):

subsort Person < ListOrd < List .

5Of course, it is possible to use the if statement with conditional equations, but we leave this combi-
nation for more advanced users.

7

Once we have defined these sorts we face a problem: the empty list (defined as lv)
is ordered but, which constructor could we define for non-empty ordered lists? The only
option is to use the same constructor used for general lists and define later ordered list by
means of their properties:

op lv : -> ListOrd [ctor] .

op __ : List List -> List [ctor assoc id: lv] .

vars P P’ : Person .

vars L L’ : List .

var LO : ListOrd .

The constructor for non-empty lists has some interesting details:

• It receives as arguments two elements of sort List. However, which is the form of
these elements? As we explained above, singleton lists are just persons. Once we
have several persons we can create larger lists. The proper way to create these lists
is explained below.

• The syntax __ indicates that 2 lists put together (empty syntax) create a new list.
That is, given the persons a and b from the PERSON module we can create the list
a b. The intuition is that we place a in the position given by the first underscore,
then we write a whitespace, and then we place b in the position given by the second
underscore. If we want to add now a third person c we would create a b c (the list
a b corresponds to the first underscore, while c corresponds to the second one).

• The empty list lv works as the unit element for lists. This means that Maude
considers that any list L is equal to the lists L lv and lv L. This feature is useful
to define simpler equations, as we will see later.

Now we need to define the properties that ordered lists must fulfill. We will use
membership axioms to define them, written in Maude with keywords mb and cmb, for
unconditional and conditional ones, respectively. Then we will write a term, :, and the
corresponding type. In our case we need a conditional axiom stating that (i) the first
element is smaller than or equal to the second one and (ii) the rest of the list is also
ordered. This second condition is, in turn, a membership condition, with syntax :, as we
used for the axiom itself:

cmb P P’ L : ListOrd

if P <= P’ /\

P’ L : ListOrd .ggs sNote that the empty list is ordered by definition, while singleton lists are ordered
by the subtype definition.

We can start defining now the functions in the module. The head of a list is a partial
function defined as follows:

op head : List ~> Person .

eq head(P L) = P .

In this equation we implicitly use the unit element. Why does this equation work for
singleton lists? Because the person is bound to the variable P and is returned, while the
variable L is bound to the empty list. This equation can be only applied if the list is not
empty. Likewise, the tail of a list is computed as follows:

8

op tail : List ~> List .

eq tail(P L) = L .

The size of the list is defined as:

op size : List -> Nat .

eq size(lv) = 0 .

eq size(P L) = s(size(L)) .

The function member?, which checks whether an element is a member of the list, can
be defined in a tricky way. If the element is part of the list it is enough to use variables
surrounding the element we are looking for to match the rest of the list. Otherwise, we
return false, which is indicated by using the owise attribute, which stands for otherwise:

op member? : List Person -> Bool .

eq member?(L P L’, P) = true .

eq member?(L, P) = false [owise] .

In a similar way, we can define bubblesort: if the consecutive elements are not ordered
we can interchange them and keeping ordering. Once all elements are ordered the list is
returned:

op order : List -> List .

ceq order(L P P’ L’) = order(L P’ P L’)

if P > P’ .

eq order(L) = L [owise] .

Finally, we show how to insert in an ordered fashion. If we insert in the empty list the
singleton list is returned. Otherwise, we compare the value to be inserted with the head
of the list and distinguish cases:

op insert-sort : ListaOrd Persona -> ListaOrd .

eq insert-sort(lv, P) = P .

eq insert-sort(P L, P’) = if P <= P’

then P insert-sort(L, P’)

else P’ P L

fi .

We can use the function above to define the order-by-insertion function:

op sort-by-insertion : ListaOrd -> ListaOrd .

eq sort-by-insertion(lv) = lv .

ceq sort-by-insertion(P L) = insert-sort(L’, P)

if L’ := sort-by-insertion(L) .

endfm

It is worth noticing the pattern matching condition, with syntax :=. This condition is
used as an assignment, that is, it binds, if possible, the values to the variables and then
the evaluation of the rest of conditions continues.

9

3.2 System modules

System modules extend function modules with rewrite rules, which stand for state transi-
tions. Roughly speaking, functional modules are used to define the data structures while
system modules are used to define the behavior of the system. The main advantage of rules
with respect to equations is that, in contrast with the restrictions given in Section 3.1,
rules can be non-terminating and non-confluent.

As system module example we present the jar problem, as presented in Die Hard 3 c©:

http://www.wikihow.com/Solve-the-Water-Jug-Riddle-from-Die-Hard-3

The problem is defined as follows: we have 3 jars with capacity for 3, 5, and 8 liters,
and we have an infinite amount of water. We want to obtain 4 liters in any of the jars
but we can only fill them, empty them, and transfer water from one to the other (without
exceeding the capacity of the jars). Which are the movements we are supposed to perform
to reach the solution? To solve this problem (the code is available in die-hard.maude)
we define the DIE-HARD module as follows:

mod DIE-HARD is

protecting NAT .

sorts Jar JarSet .

subsort Jar < JarSet .

op jar : Nat Nat -> Jar [ctor] . *** Capacity / Current content

op __ : JarSet JarSet -> JarSet [ctor assoc comm] .

vars M1 N1 M2 N2 : Nat .

Note first that the module starts with the keyword mod but the rest of the elements
are equal to the ones in functional modules. In our case jars are pairs of natural numbers,
where the first element stands for the capacity and the second one for the current amount.
Moreover, the sort JarSet is defined for sets of jars. We define a constant initial of sort
JarSet stating that all jars are empty in the initial state:

op initial : -> JarSet .

eq initial = jar(3, 0) jar(5, 0) jar(8,0) .

State transitions are defined by means of rewrite rules. Rules have a syntax similar to
equations, using rl instead of eq (crl for conditional rules) and => instead of =. Labels
are not required but very useful for later analyses. In our problem we start defining a rule
empty for emptying a jar:

rl [empty] : jar(M1, N1) => jar(M1, 0) .

We follow the same idea to fill a jar:

rl [fill] : jar(M1, N1) => jar(M1, M1) .

We also have 2 rules to transfer water between jars. The first one, transfer1, illus-
trates the case where the jar has enough capacity to receive all the water from the other
one:

crl [transfer1] : jar(M1, N1) jar(M2, N2)

=> jar(M1, 0) jar(M2, N1 + N2)

if N1 + N2 <= M2 .

10

http://www.wikihow.com/Solve-the-Water-Jug-Riddle-from-Die-Hard-3

In the second rule, transfer2, we fill the jar while the other one still has some water
remaining:

crl [transfer2] : jar(M1, N1) jar(M2, N2)

=> jar(M1, sd(N1 + N2, M2)) jar(M2, M2)

if N1 + N2 > M2 .

endm

The module finishes, as shown above, with the keyword endm. Once the modules is
loaded we can execute it in different ways. The basic command is rewrite, abbreviated
as rew, that applies equations and rules to the term given as argument. However, in this
example the execution does not finish (for example, it is always possible to empty a jar),
so we need a more powerful command. For example, we can ask Maude to apply at most
10 rewrite steps writing that number in square brackets:

Maude> rew [10] initial .

rewrite [10] in DIE-HARD : initial .

rewrites: 139 in 0ms cpu (0ms real) (1022058 rewrites/second)

result JarSet: jar(3, 0) jar(5, 0) jar(8, 0)

The result is not very interesting, because it seems nothing happened. In fact, it is
very likely that the system just applied empty 10 times, which does not modify the initial
term. In order to apply different rules we can use the frew command, which performs a
fair rewrite:

Maude> frew [10] initial .

frewrite in DIE-HARD : initial .

rewrites: 18 in 0ms cpu (0ms real) (~ rewrites/second)

result JarSet: jar(3, 0) jar(5, 5) jar(8, 8)

This time we obtained a new term, but it is not very useful to analyze how to reach
a given configuration. For this analysis we need the search command, which checks
whether a given result is reachable. If reachable, it shows the path (that is, the se-
quence of rules) that must be used. In our case we want just one solution (indicated
as [1]) with any of the jars containing 4 liters (given as a pattern); moreover, we in-
dicate that we want the search to apply 0 or more rewrite steps (search arrow =>*), so
if the initial state fulfills the condition it would be returned as solution (other options
would be 1 or more steps, with the arrow =>+, and search for final states, with =>!).
We use variables for the pattern (ggs s these variables must be defined with its type,
it is not possible to use variables from the module) when some values can be omitted, for
example for the jar capacity.ggs sThe variable B:JarSet is very important but most of the people forgets about it.
This variable is in charge of “collecting” the rest of the jars. This kind of variables are
often used to abstract those parts of the solution that are not interesting for the search.

Maude> search [1] initial =>* jar(N:Nat, 4) B:JarSet .

search in DIE-HARD : initial =>* B:JarSet jar(N:Nat, 4) .

Solution 1 (state 75)

states: 76 rewrites: 2134 in 0ms cpu (8ms real) (~ rewrites/second)

B:JarSet --> jar(3, 3) jar(8, 3)

N:Nat --> 5

11

We see in the result that we obtained 4 liters in the 5 liters jar and that the solution
was found in the 75 state. We can now use the show path command to print the path:

Maude> show path 75 .

state 0, JarSet: jar(3, 0) jar(5, 0) jar(8, 0)

===[rl jar(M1, N1) => jar(M1, M1) [label fill] .]===>

state 2, JarSet: jar(3, 0) jar(5, 5) jar(8, 0)

===[crl jar(M1, N1) jar(M2, N2) => jar(M1, sd(M2, N1 + N2))

jar(M2, M2) if N1 + N2 > M2 = true [label transfer2] .]===>

state 9, JarSet: jar(3, 3) jar(5, 2) jar(8, 0)

===[crl jar(M1, N1) jar(M2, N2) => jar(M1, 0) jar(M2, N1 + N2)

if N1 + N2 <= M2 = true [label transfer1] .]===>

state 20, JarSet: jar(3, 0) jar(5, 2) jar(8, 3)

===[crl jar(M1, N1) jar(M2, N2) => jar(M1, 0) jar(M2, N1 + N2)

if N1 + N2 <= M2 = true [label transfer1] .]===>

state 37, JarSet: jar(3, 2) jar(5, 0) jar(8, 3)

===[rl jar(M1, N1) => jar(M1, M1) [label fill] .]===>

state 55, JarSet: jar(3, 2) jar(5, 5) jar(8, 3)

===[crl jar(M1, N1) jar(M2, N2) => jar(M1, sd(M2, N1 + N2))

jar(M2, M2) if N1 + N2 > M2 = true [label transfer2] .]===>

state 75, JarSet: jar(3, 3) jar(5, 4) jar(8, 3)

The search command is very powerful, as illustrated in Section 3.3. It also supports
condition using the keyword such that (abbreviated as s.t.). The command above could
be rewritten using this syntax as:

Maude> search [1] initial =>* jar(N:Nat, M:Nat) B:JarSet s.t. M:Nat == 4 .

search in DIE-HARD : initial =>* B:JarSet jar(N:Nat, 4) .

Solution 1 (state 75)

states: 76 rewrites: 2134 in 0ms cpu (8ms real) (~ rewrites/second)

B:JarSet --> jar(3, 3) jar(8, 3)

N:Nat --> 5

3.3 Checking invariants by search

One of the main advantages of using Maude to specify a system is that we can automat-
ically verify most of its properties. Although many different verification techniques are
available, we will focus in checking invariants by using search.

As we know, an invariant is a property that holds for all states in a computation. We
will analyze invariants for systems with a finite state space. It is easy to check this kind of
properties by using the search command: it is enough to find a state that does not fulills
the property; otherwise the invariant holds.

In the example in Section 3.2 we can define the invariant “we always have 3 jars”. To
check it we define the module INVARIANT, which imports the DIE-HARD module:

mod INVARIANTE is

pr DIE-HARD .

var JS : JarSet .

var J : Jar .

var O : Qid .

We define the invariant with the ok function, which checks that the number of jars is
always 3:

12

op ok : JarSet -> Bool .

eq ok(JS) = numJars(JS) == 3 .

This functions uses an auxiliary function in charge of counting jars. Because we have
no unit element we define an equation for non-singleton sets and another one for the
singleton set:

op numJars : JarSet -> Nat .

eq numJars(J JS) = 1 + numJars(JS) .

eq numJars(J) = 1 .

endm

We can now check the invariant. As explained above, we look for states that do not
fulfill it:

Maude> search initial =>* JJ:JarSet s.t. not ok(JJ:JarSet) .

No solution.

In fact, there is no state that fulfills the negation of the invariant, that is, it holds for
all states and hence it is correct.

3.4 Using Maude

As explained in Section 2, Maude is available (Linux and Mac) at:

http://maude.cs.uiuc.edu

There exists a Windows version available at:

http://moment.dsic.upv.es/

Both pages have an installation manual. Once installed, we start Maude and find a
welcome screen similar to this one:

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 2.7 built: Feb 7 2014 15:12:51

Copyright 1997-2014 SRI International

Mon Sep 1 12:02:38 2014

We can now load files with the load command. For example, stack.made is loaded
as:

Maude> load stack.made

If the file is correctly loaded Maude displays the modules that have been introduced.
It is also possible to load modules with the in command. Moreover, this command can be
used in maude files to load dependent modules. Finally, it is also possible to start Maude
with a list of files to be loaded as follows:

$ maude stack.maude

13

http://maude.cs.uiuc.edu
http://moment.dsic.upv.es/

Commands will be executed in the module that was loaded in the last time. This is
important because, when loading several independent modules, some functions might not
be available in the last one. It is possible to change the module with in. For example, if
we want to execute a command in module M we need to use:

Maude> red in M : 3 + 4 .

Morever, this will change the current module to M. Finally, we leave the Maude system
with q:

Maude> q

Bye.

3.5 Frequent errors

In this section we present the most frequent errors found when working with Maude:

• Variable names and attributes are separated by whitespaces, not by commas.

• When declaring several operators in the same line the keyword ops is required.
Otherwise, Maude will understand that a single operator using whitespaces is being
declared.

• Commands finish with a dot.

• Infix operators require whitespaces. For example, the term 0+0 is wrong, being the
correct term 0 + 0.

• In some case an unbalanced parenthesis makes Maude to wait for extra input. If you
think this might be your case try to execute a simple command, like reducing 1, to
check whether it works or the system is blocked.

3.6 Predefined modules

In this section we list some of the most used built-in Maude modules. Remember that
they are available in the prelude.maude file. The most common Maude modules are:

BOOL. The BOOL module is imported by default by all Maude modules. It defines the
sort Bool, the constructors true and false, and provides Boolean functions such as
equality (_==_), the unary function not, and the binary functions _and_ and _or_.

NAT. The NAT module provides the types Zero, which identifies the number 0; NzNat, which
identifies positive natural numbers; and Nat, which is the union of the previous sets.
Morevoer, it provides the standard functions on natural numbers, like addition (_+_)
or multiplication (_*_).ggs s Natural numbers do not implement difference but symmetric difference (sd),
which subtracts the smallest number from the larger one. For example, we have
sd(3, 4) = sd(4, 3) = 1.

STRING. The STRING module provides the sort String to represent strings of characters
enclosed by (""). For example, the terms "hello" and "123" have sort String.

QID. The QID module provides the sort Qid, which implements quoted identifiers. For
example, the terms ’hello and ’123 have sort Qid.

14

	Introduction
	Maude
	Programming in Maude
	Functional modules
	Natural numbers
	Stacks
	Lists

	System modules
	Checking invariants by search
	Using Maude
	Frequent errors
	Predefined modules

