Module Title:

Tutorial: Complex Numbers

Open Autograph. On the dropdown menu open a "New Complex Number Page".
Open each task on a New Complex Number Page as you work through them.
Do not save your work. Re-load a task on a new page if necessary.

When asked what you notice, or to explore a task, you may want to consider situations when z is real or imaginary, the modulus or argument of z, symmetries, etc.

Task 1: Open the Autograph file Task 1

There are three complex numbers labelled z_{1}, z_{2} and $z . \quad z_{1}$ is to be kept fixed while z_{2} and z can be moved. Select z_{2} and move it until z reaches the position $6+5 j$.
(a) What complex number is z_{2} ?

Right click and "Unhide All" to check your answer. The correct answer appears in green.
(b) What is the mathematical relationship between z_{1}, z_{2} and z (how are they connected)?
(c) Now calculate by hand: With $z_{1}=-3+j$ and $z=6+5 j$, find z_{2} such that $z_{1}+z_{2}=z$.
(d) Re-load Task 1. Move z_{2} around the screen and notice how z changes. Describe the position of z in relation to z_{1} and z_{2}.
(e) Explore this relationship. Move z_{1} and z_{2} to different locations but make sure that z still ends up being $6+5 j$. Does what you thought in (d) still hold?

Module Title:

Tutorial: Complex Numbers
Task 2: Open the Autograph file Task 2
There are three complex numbers labelled z_{1}, z_{2} and $z . \quad z_{1}$ is to be kept fixed while z_{2} and z can be moved. Select z_{2} and move it until z reaches the position $3+j$.
(a) What complex number is z_{2} ?

Right click and "Unhide All" to check your answer. The correct answer appears in green.
(b) What is the mathematical relationship between z_{1}, z_{2} and z (how are they connected)?
(c) Now calculate by hand: With $z_{1}=-1-3 j$ and $z=3+j$, find z_{2} such that $z_{2}-z_{1}=z$.
(d) Re-load Task 2. Move z_{2} around the screen and notice how z changes. Describe the position of z in relation to z_{1} and z_{2}.
(e) Explore this relationship. Move z_{1} and z_{2} to different locations but make sure that z still ends up being $3+j$. Does what you thought in (d) still hold?

Task 3: Open the Autograph file Task 3

There are two complex numbers on the screen: $z_{1}=-3-j$ and $z_{2}=1-j$.
(a) Calculate z_{1} multiplied by z_{2} (by hand).

Right click and "Unhide All" to check your answer. The correct answer appears in green.
(b) Calculate (by hand) a new value of $z_{1} z_{2}$ by keeping z_{1} and changing $z_{2}=-1-j$.
(c) Select z_{2} and move it to the new position $-1-j$. Read off the result for $z=z_{1} z_{2}$.

Were you correct in (b)?
(d) Now calculate (by hand) a new value of $z_{1} z_{2}$ for $z_{1}=z_{2}=-1-j$.
(e) Select z_{1} and move it to the new position $-1-j$. Read off the new result for the number z. Were you correct with your calculation in (d)?
(f) Explore this task by choosing your own values for z_{1} and z_{2}. Multiply them by hand and check your answer using the Autograph file.

Module Title:

Tutorial: Complex Numbers

Task 4: Open the Autograph file Task 4

There are three complex numbers labelled z_{1}, z_{2} and z. The complex number $z_{1}=-2+j$.
(a) What is the complex conjugate of z_{1} (usually denoted by z_{1}^{*})?
(b) Select z_{2} and move it to the position of the complex conjugate of z_{1}. Notice what is happening to z. What is the mathematical relationship between z_{1}, z_{1}^{*} and z (how are they connected)?
(c) Verify this by hand (a calculation).

Task 5: Open the Autograph file Task 5

There are two complex numbers labelled z_{1} and z with $z=z_{1}^{2}$.
(a) Select z_{1} and move it to the new position $3+j$. Notice how z changes.
(b) Calculate (by hand) a new value for $z=z_{1}^{2}$ when $z_{1}=3+2 j$.
(c) Select z_{1} and move it to the position $3+2 j$ to check your answer. Were you correct?
(d) Now move z_{1} to the position $1+j$. Interpret the result.
(e) Select z_{1} and move it until $z=z_{1}^{2}$ is real. Find different z_{1} so that z_{1}^{2} is real. What property must z_{1} have so that z_{1}^{2} is real?
(f) Select z_{1} and move it until $z=z_{1}^{2}$ is purely imaginary and negative. What property must z_{1} have so that z is purely imaginary and negative?
When does $z=z_{1}^{2}$ become purely imaginary and positive?

Module Title:

Tutorial: Complex Numbers

Task 6: Open the Autograph file Task 6

There are two complex numbers labelled z_{1} and z_{2}.
(a) Select z_{1} and move it to different positions. There is a (mathematical) relationship between z_{1} and z_{2} but it is quite hard to see - so first move z_{1} so that z_{1} is real. What do you notice about z_{2} ?
Try different places for z_{1} keeping it always a real number. When does z_{2} have a larger modulus than z_{1} ? When does it have a smaller modulus? When do they both have the same modulus? Remember to also try negative value for z_{1}.
(b) Try to find a relationship between the modulus of z_{1} and the modulus of z_{2}.
(c) Click on the polar co-ordinate icon on the toolbar. Now allow z_{1} to take any value, not only just real. Move z_{1} and focus on the angle that it makes with the positive real axis. Also focus on the angle that z_{2} makes with the positive real axis. Try to find a relationship between the angles as you move z_{1} around.
(d) What do you think is the (mathematical) relationship between z_{1} and z_{2} ?

