Pedagogic case and specific course in which designed tasks and units are used

Name of university: Brno University of Technology

Contact person: Josef Rebenda, josef.rebenda@ceitec.vutbr.cz

Pedagogic case:	 Inquiry-Based Teaching of selected topics in Complex Analysis within a mathematics course Mathematics 2
Description (including temporal scheme for design, development and implementation)	 Introduction of inquiry-based tasks in Complex Analysis during the second semester of study for first year Electrical Engineering students Temporal scheme: Design: December 2018 Development: January – April 2019 Implementation: February – May 2019

Aim of pedagogic case	 To bring more inquiry into teaching selected topics in Complex Analysis to Electrical Engineering students To find out which inquiry-based pedagogic arrangements are realistic for tutorials with larger groups of students
Mathematical concepts	 Complex number and function Holomorphic function Path integral Singular point of a function Residue at a singular point Transformation of a function
Addressed practice	 Tutorials for groups of up to 52 students with support of digital technology
Place in specific course Course name Place of units	 Course name: Mathematics 2 3-4 inquiry-based units/tasks during the semester, starting at week 4
Learners profile orientation, year, age, prior knowledge, other such as math anxiety, special needs,	 Electrical Engineering students 1st year students (age 18-21), spring semester Diverse high school mathematics knowledge, eventually unified by a special (non-mandatory) course Mathematical Seminar Students should have passed Mathematics 1 and have the following Calculus knowledge: limit of a sequence and a function, derivative of a function, basic integration methods, proper and improper integral, infinite series of numbers and functions Mathematics content is new to the vast majority of students, but there may be some repeating students Mathematics is not an attractive subject for a large number of students and many appreciate to see applications
Organization of specific course study credits/hours, location, group size	 6 ECTS credits course Course is taught each week during 13-week semester (usually first week of February – first week of May) Course week: 150 min lecture in a large lecture hall (capacity 200-300 students) + 100 min tutorial in a seminar room/computer lab (capacity 75/52 students) Cohort about 500 students is divided into 2 groups for lectures and into (up to) 10 groups for tutorials
Expected learning outcomes	 Students are expected to: Identify real and imaginary part of a complex function Determine where a complex function is holomorphic

Envisioned use of digital technology	 Calculate the value of a complex path integral Determine type of a singular point of a complex function and calculate a residue at a singular point Apply transformations to solving differential and difference equations Maplets – executable files running under CAS Maple available in PCs in the computer lab Wolfram Alpha (online) Possibly Matlab (available in PCs in the computer lab)
Planning of tasks	 Analysis of the current content of the course Discussion of the persons involved Design of inquiry-based activities and tutorial arrangements Choice of particular tutorials where inquiry-based activities will be tested Development of inquiry-based tasks Implementation of the IB activities in tutorials, monitoring the course of each tutorial Reflection and discussion of the course of each tutorial Getting feedback from students (polls, interviews)
Names of persons involved	 Josef Rebenda Hanna Demchenko David Staněk
Course:	Mathematics 2
Learning objectives	 To extend the student knowledge to methods of functions of several variables and to application of partial derivatives To acquaint students with some elementary methods for solving the ordinary differential equations To make possible a deeper insight into the theory of functions of a complex variable To equip students with the ability to solve usual tasks by the Laplace, Fourier and Z transforms.
Learning contents	 Function of several variables, partial derivative, tangent plane Differential equations of first order Linear differential equations of higher order Complex numbers, complex functions (C.F.), differentiability of C.F., holomorphic functions Integral of C.F., Cauchy Theorem and Formula Laurent series, Residue Theory Laplace Transform, Fourier Transform, Z-Transform, difference equations

Teaching /learning activities	 Lectures Homework - 2 projects (solving given pseudo-randomized standard numerical examples) Tutorials problem solving at white board using online material calculations using Maplets (see below) offline work on the projects supported by possibility of discussion with tutor
Media	 project defense Online: Course material in PDF format (lecture slides, textbook, tutorials book) Offline: Maplets
Evaluation	 At the end of semester: a written exam During semester: 2 written tests + 2 assessed and defended projects
Instructor role	 Developing tutorial content (inquiry-based tasks/problems) Introducing inquiry-based material Encouraging students' activity and discussion Monitoring learning process/progress and providing support and feedback Reflecting and discussing the course of each tutorial, adjusting the content
Student roles	 Active participation in tutorials Engaging in inquiry-based mathematics tasks Reasoning methods of solution and discussing ideas with peers/tutors Reflecting on their learning
Other aspects	•